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COMPUTATION OF DIFFERENTTAL INVERSE MEAN FREE PATHS, INVERSE MEAN FREE

PATHS, AND STOPPING POWERS FOR ELECTRONS IN LIQUID WATER

ABSTRACT

A new numerical integration procedure has been developed to compute
differential inverse mean free paths for electrons in water, and has been
incorporated into a code which caleulates inverse mean free paths and

stopping powers, Relativistic and exchange corrections have been included.

I. INTRODUCTION

A lMonte Carlo code simulating the transport of electrons in liquid
water has been developed by Hamm and others1 utilizing the differential
inverse mean free paths (DIMFP's) and inverse mean free paths (INMFP's)
for inelastic collisions, The procedure previously used to calculate
DIMFP's for this code has been found to produce serious errors at large
energy transfers (above 10 keV). I have developed a new procedure for
caleculating DIMFP's free from these errors, and have used this procedure
to calculate IMFP's and stopping powers,

The total inelastic IMFP and DIMFP are given in the first Born

2
approximation byE . 3B+ ! 2(E-w)
d
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where E is the non-relativistic kinetic energy of the electron and €(w ,q)
is the dielectric response function for energy transfer ¢ and momentum
transfer q, Exchange effects and relativistic corrections are not included

in (1).
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The dielectric response function used is given ‘r;y1
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where EP = 4w Ny = 0,062257 and N, is the number density of water mole-

M
cules in the medium,

II. NUMERICAL COMPUTATION OF DIMFP'S

The original procedure for calculating DIMFP's, using a numerical
integration routine based on the trapezoid rule, was sufficiently acc~-
urate for low energy transfer W, but was subject to large errors for
high & (above 10 keV), These errors were not of great importance in
calculating }A(E) since for large W %’-‘5_’ behaves as ‘{uz s and the con-
tributions to t&(E) from this region will be relatively small., However,
in calculating the stopping power

E
dE _ ( ,du
- ) o o s )

the effect of the errors is greatly increased by the presence of the mult~-
iplicative factor W, resulting in computational errors of up to 10% and

making difficult a meaningful comparison with experimental data and other



theoretical calculations., Inaccuracies in integration procedures also
hampered proper evaluations of the chosen response function, such as
verification of applicable sum rules and investigation of behavior at
high enexgy transfer.

Obtaining accurate values for %ﬁ; from numerical integration is
aifficult because the function 4Im(yq)1s very peaked for large w
in the region of the Bethe ridge. For exémple, for w = 90 keV the
region in which the function has more than 0.1% its maximum value has
a width of 0.8, while a typical integration interval over q has width
on the order of a hundred, This behavior produces two main types of
error in approximating the integral of %I’“(%'Gﬁ\)' First, if equal sub-
divisions are used in forming the approximating sum then only a few
points in the vicinity of the peak will be accounted for. For example,
if E = 100 keV and W = 90 keV, and if the number of subdivisions is 500
(a typical value), then the width of the intervals will be 0,1 and only
about ten points will be located in the peak region, far too few to give
accurate results. Greatly increasing the number of subdivisions is im~
practical in terms of the time involved, since computing In‘éé;é\using

(2) and (3) is a lengthy procedure.
-~
Second, the function.LT$i;T;%p is highly exponential in character,

!
as can be seen in Fig, 1, and methods such as the trapezoid rule and
Simpson's rule, which are based on approximating the funetion with poly-
nomials, are inherently ill-suited to this problem.

Thus a method for calculating %ﬁi was sought that would give ace-
urate results at high W and use only a moderate number of integration
points, After much experimenting a procedure was developed which satis~
fies the above requirements, This procedure has two main features, cor-
responding to the problems mentioned above, First, methods based on

bl
s

polynomial approximations were abandoned, and the integral of 2%Im(8(wg§>
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over an interval (ql, qz) approximated by the area under an exponential
function £(q) = ea.q+b, where f(q,) =%‘Im(g‘:;‘%\\) and f(qz) ='§11h(é{.‘:,&z).

This area is (q,- q,)(£(a,)- £(a,))/(Log(£(a,))~ Log(£(qy))). An approx-
imation of this kind, besides conforming more closely to the actual be-
havior of -%T,m(g‘;(t&}), also has the advantage of using only one interval

at a time, unlike Simpson's rule and other rules using higher degree poly-
nomials, The additional computer time necessary to evaluate the loga-
rithms is né)t important since it is small in comparison to the time re-
quired to evaluate I“(g:(l;.‘?\\ for each point,

The second feature involves abandoning the use of equal subdivisions
and making the interval width used dependent on the slope of the function,
so that more intervals will be used in the vicinity of the peak. After
approximating the integral over the interval (ql, qz) as described above

the next point used is given by q3 =q, +4 , where
- Q- R !
- =%
§ \‘ 2 Lctqﬁ)"ﬁc&g

™ being an adjustable error parameter specific for a given W. Thus if

the function is inecreasing (or decreasing) rapidly in a given region, so
that the absolute value of the slope is large, then the interval width
will be small. This procedure is based on an analysis of the error poss-
ible when using the trapezoid rule to integrate a monotoniec funection, but
is actually used empirically, with the parameter & being chosen by trial
and error, That is, %ﬁ is calculated several times for a specific @,
using a smaller value of ol each time until suffieient accuracy is ob-
tained, This is repeated for other representative values of W, and an
equation obtained through least squares analysis which, for a given W,

gives the appropriate parameter «, This process was carried out for w
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from 7.4 eV (taken as the ionization threshold) to 100 keV (using a pri-
mary energy E of 100 keV) and later extended to the region from 100 keV
to 300 keV (using B = 300 keV), Parameters computed from this equation
should be appropriate for any value of E less than 300 keV, since de~
creasing E for a given w merely reduces the interval over q (and thus
reduces the number of points used in the approximation), However, it
was decided to introduce a factor reducing & for small E in order to
keep the number of points used roughly equal to the number used at high-
er £ and also to improve accuracy somewhat.,

The main disadvantage of the procedure outlined above is obviously
the need to determine the appropriate error parameters by trial and error
(although once completed the process should not need to be repeated),
There are also other smaller problems, For example, since the length of
an interval is determined by the results from the previous interval, the
first interval must be determined separately. Also, a lower limit on
interval widths is necessary, to prevent using too many intervals, as is
an upper limit, to prevent using too few intervals and skipping over the
peak region, These modifications have been incorporated into the pro-
cedure.

The integration routine as presently formulated gives accurate re-
sults for %ﬁa (to within 0,5% or less) over a wide range of W, and is
fairly independent of the specific form of Im(é&&ﬁ. The average number
of intervals used is between 100 and 500 depending on E,

As a final note, it was found that the previously used computation
of'Ih(gﬁ%é)was subject to some inaccuracies in the peak region (the de-
nominators in (2) and (3) are then small and round-off error can occur),

-
Thus all the variables involved in the computation of I"‘(ET;;L\ were con-
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verted to double precision type., To further ensure accuracy all vari-
- (=l
ables involved in the integration ofélmdéa;§3 were also changed to

double precision,

IIT. NUMERICAL COMPUTATION OF IMFP'S AND STOPPING POWERS

In computing P(E) and 4 from (1) and (&) the functions dp

dx dw
and:»%%i are integrated using approximation with exponential func-
a +b

tions of the form g(w ) = e in a similar procedure to that described
above, However it was not deemed necessary to use an interval determin-
ing method based on an error parameter., Instead the values of W used
in the approximating sum are entered as data, as was done previously,
with the values so distributed so as to give an adequate number of
points in the region where %5; has its peak (from about 15 eV to 80 ev),
I feel the convenience of this arrangement in printing out results out-
weighs any lack of flexibility present.

In an exception to the above method, the last value of & 1s not
taken to be E (for which %E; vanishes) but rather 99.9% of E, The
first value of  used in (1) and (4) (and in all other integrations

over w where zero is the stated lower 1imit) is taken to be 7.4 eV,

IV. EVALUATION AND MODIFICATION OF THE CODE

To verify the suitability of the response function given by (2)
and (3) a number of computation were made to ascertain iflﬁiéiﬁgsat—
isfigé‘applicable sum rules and showed the appropriate classical behav-
ior in the region of high energy transfer.

The two sum rules used were

n

VGQ -1 |
g uih( m%ﬁ@)éu = 2w (5)

o
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and
(v’

ﬂ wloge Im( gz o) de = LetnlogT (@

o

where n = 0,04957 is the electron density in the medium and I is the
mean excitation energy., Using an upper limit of 300 keV in (5) a value
of 0.9800 was obtained for the integral, while 2172n = 0,9785, Using
an upper limit of 300 keV in (6) the value I = 71,0 eV was obtained,
compared to the value T = 65.1 eV used by Berger.3

For a classical electron-electron collision dp = EEQ 4 The

dw ~ FE°

DIMFP's computed by the code should approach this at high W, for which
the Qinding energy of the secondary electron can be neglected; this be-
havior is seen in Fig. 2. For example, for B = 100 keV and W = 90 keV
u}giEiz 0.1560, compared to Tn = 0.1557, For E = 60 keV and & = 50
keV oF %’iE = 0,1568, The previously used routine for calculating %ﬁ
was too inaccurate to show this (Fig. 3).

Thus the scheme for calculating DINFP‘s shows the proper classical

behavior at high energy transfers, However, it is in this region (10

keV and above) that relativistic and exchange effects become increasing-

1y important. To include relativistic effects both the response func-
tion and the expression for %E; were modified, In the response func-
tion free-electron like dispersion of ionization losses is still pre-
sent, but the relativistic relation between kinetic energy and momentum

is used. The relativistically corrected response function is given by

eX  ex L2
2 E g6
§ (w,9)= |+Es 2§ ()
i 5% PR'n % (Ez;._wz)l +Y;‘;’w" )
. D 1 (7
o Son (Eh*‘?4‘+%78"é?)=h}

1 ]
+F. 2 £.(
T, * [(Er?' c"'\j”gl/(}_(’-f: w"f‘%\(::w"
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The relativistically corrected DIMFP is given by

Iz 0 + [ 28045 )20 Ba) #5a

2
dpte,w) | (+¥a) erg =t
__.t\;‘_a}__. '\TEU*E/Z, ) 9 Im( u“’%)j (9)

{280+ 552) = [ 28 (1485 2 -2 (1 ) +92

If B << o? (B << 511 keV) then (7),(8) and (9) reduce to the expressions
of (2), (3) and (1) respectively,
The stopping power with the effect of exchange included is calculated
using '
[
2 " E WP I
dx T /g |
(10)
(w”f 2)

[«

( Thid (|1E/(‘-v\' ]
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where E. and p are constants and V:(E’ w ) is calculated using (9). IMFP's

0
are calculated using

72 - (1+%7)
,-*(E) = S dwi[r;(E;w)fr*‘(E‘;E‘“u)] ( )tlr([«w)rlﬁ.f; el |1.t~/:’z.')2~
0

N (1+ “‘-1/3—) \ (11)
TR (1+540) -
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This scheme is obtained by analogy from the Moller formula&

‘j_tf., n (+ ) HE/CZ.) 1] (1+ %) | }
dw E( p

= Ewgo LT T T GEa (wEa T e
o (17 ) “h(=+ﬁﬁq
by replacing E (T:EM W With rA(E},u) and | (HE/L&)(L \lwith ,A(E Bew ),
The factor (f%ﬁijp was introduced to take into account in some way the
increasing importance of exchange effects for high energies and decreas-
ing importance for low energies, If E <K E then the factor ( ) is
negligible and (10) and (11) reduce in essence to (4) and (1).

Stopping powers calculated with and without consideration of exchange
are shown in Table 1, along with the experimental data of Cole5 (values
for E = 50 keV and 100 ke¥ were obtained from BergerB). The values for
the complete exchange effect were obtained from (10) by replacing the
factor (ﬁgﬁ)p with unity., For calculations involving a varying exchange
effect (Fig. 4) By = 3000 eV and p = 1; these values were chosen in order
to obtain rough agreement with Cole's results. The agreement is not very
good in the region below 1 keVsy this reflects uncertainties both in ex-

perimental data and in the theoretical schenme,

V. CONCLUSION

A new procedure has been developed to accurately compute DIMFP's
for electrons in liquid water, and has been incorporated into a code
which caleculates IMFP's and stopping powers, The code includes relati-
vistic corrections to the dielectric response function €(w, q) and to
the DIMFP, and is available in two versions, with or without exchange
corrections, Thus far the code has been tested over a range of primary

energies from 50 eV to 100 keV, and should be applicable to energies of



up to 1 MeV and above with minor modification., It may also be easily
adapted to compute IMFP's and stopping powers for heavy ions in liquid
water. The code and the integration procedure underlying it should
thus improve the electron and heavy ion transport codes and permit a
better evaluation of the theoretical dielectric response fumction for

liguid water,
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Figure 1,

Figure 2,

Figure 3.

Figure 4,

- |
! s
"il"“(*f.(u}ci*,\) as a funetion of q for W = 90 keV, in the peak

region, Response function is non-relativistic.

“ (aiﬁf, as a function of W for E = 100 keV, calculated using
the new integration procedure., Response function and expres-

sion for DIMFP are non-relativistic.

4 E as a function of W for E = 100 keV, calculated using
dw
the previously used integration procedure., Response function

and expression for DIMFP are non-relativistic.

Stopping power as a function of E, calculated using relati-
vistically corrected DIMFP and response function and taking
into account effects of exchange. Experimental points are

5

from data of Cole,
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g (ev) ‘%% (11eV/cm) -gg (MeV/cm) 0%% (MeV/cm) 7%%ﬂ (MeV/cm)
T,ne Tr,ce r,ve Cole

50 175.7 6l.3 173.9 232.0

100 385,0 179.3 378.4 303.0
200 358,8 238.9 351.3 220,0

500 217.,0 173.9 210,8 195.0
1000 134,6 113.9 129.4 130.0
5000 h2,81 37.58 39. 54 39.2
:7;%;000 25,02 22.41 23.01 23.2
50,000 7.195 6.631 6.663 6.751°
100,000 L,k450 4,135 b, 1h4 4.202°

Table 1.

Stopping powers calculated using relativistically corrected DIMFP and with no
exchange effect, complete exchange correction and varying exchange correction,
and experimental stopping powers from data of Cole.s Values for E = 50 keV

and 100 keV are from Berger.3



